

Divisible Seals for Microducts

For 5-10 mm Microducts

Features

- Highly water and gas tight
- For microducts from 5 to 10 mm
- For air blown fiber, nano cables or micro cables from 1.0 to 2.5 mm
- Retro-fit design

Application

The divisible seals for microducts provide a gas and watertight seal for open duct ends installed with air blown fiber or nano cables.

The seals are tested for best functionality in combination with the Hexatronic Stingray air blown fiber and Raptor nano cables.

Design

The seals are designed to be installed after the fiber or cable has been blown in to the microduct.

This type of seal is intended for air blown fibers or extra slim nano cables and consist of a clear main body and a rubber seal.

The seal is compressed by pushing the main body towards the duct. These seals are available for 5, 7 and 10 mm microducts.

Product Information

Plastic housing: Polycarbonate

Rubber seal: TPE

Technical Information

Product Color Black body, color coded rubber seal

IP Rating IP68, 5 m

Installation Notes Ensure that the connector is pushed thoroughly towards the

duct to compress the rubber seal around the cable. Failure

doing this operation will result in potential leakage.

Ordering Information The articles are ordered in individual pieces, but delivered in

packs with defined quantities. See pack size in the article list

below.

Technical Details

														Fi	ber / ca	liber siz	e (mm	Ø)															
	F	Rubber					Ø 1,25r			erØ1			Rubber						Ø 2,5m		_			Ø 2,9m		Rubber Ø 3,3mm				Rubber Ø 3,8mm			
OD/ID mm	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7 3,8 3,9 4,0			4,0
	_	00055				82355	4.0		00000	4.0			_	_	_					_						_			_				_
4/2,5	_	82366	4.1	-	-	82366	4.2	-	82355	4.3	_		_			_	<u> </u>	├	\vdash		-	_	-	<u> </u>	\vdash		<u> </u>	\vdash		-	-	\vdash	⊢
4/3	_											82355	4.35				_	-	\vdash	_	-	-	-	_		_	_	\vdash	_	-	-	\vdash	-
5/2,5	-	82355	5.1			82350	5.2		82355	5.3			-	-	-	-	-	-	-		-	-	-	-			-	\vdash		-	\neg	\vdash	
5/3	-			_								82355	5.35		-	82355	5.4				-	-	-	-			-	\vdash		Н	\neg	\vdash	
5/3,5	-			_			_						T								_	_	_	-						Н	\neg	\vdash	
313,3																																	
6/2,5		82355	6.1			82359	6.2		82355	6.3		82355	6.35																				
6/3																82355	6.4																
6/4																																	
																															=		
7/3		82355	7.1	_	82355	7.2			82355	7.3	_	82355	7.35	_	-	82355	7.4	_			_		_				_	\vdash			_	\vdash	-
7/4			_	-					_	_	_	_	_	_	_			_				_			\vdash		_	ш		-	-	\vdash	
7/5						\vdash							_		_						_		_				_	\perp				\vdash	
7 / 5,5	_																										_	\perp		-	-	\vdash	
8/3	_	82366	8.4		82366	8.2			82355	83		82355	8 36			82355	8.4			_	-	-	-	-	-	33 34 35 36			-	$\overline{}$	\vdash		
8/4	_	OLOGO		-	02333		-	-	OLOGO	1		02.000	T	_	-	02000	_	_									-	\vdash		Н	$\overline{}$	\vdash	-
8/4	-		_	-	\vdash	\vdash	-	\vdash		\vdash	-		-	-	-		-	-								_	\vdash	\vdash		$\overline{}$	-	\vdash	
8/5	-																							_	\vdash		\vdash	\vdash		\vdash	-	\vdash	-
10/6	82356	10.09			82356	10.126				82355	10.16			82355	10.21		82355	10.25				82355	10.29			82355	10.33			823551	10.38		
10 / 91																																	

Articles 16

				one Infini	h _{owi}
	color	Layout	Tinene	Jones Neight I	forn of Divers
Article name	G	•	Φ.	4,	₩
4mm Miniduct Seal for cable 0.9mm-1.2mm MPB30608/4A	Purple	4 (0.9-1.2)	25 × 12	0.002	100 pcs/pack
4mm Miniduct Seal for cable 1.2-1.5mm MPB30608/4B	Red	4 (1.2-1.5)	25 × 12	0.002	100 pcs/ pack
5mm Miniduct Seal for cable 0.9-1.2mm MPB30608/5A	Purple	5 (0.9-1.2)	25 × 12	0.005	100 pcs/ pack
5mm Miniduct Seal for cable 1.2-1.5mm MPB30608/5B	Red	5 (1.2-1.5)	25 × 12	0.0045	100 pcs/pack
5mm Miniduct Seal for cable 1.5-1.8mm MPB30608/5C	Green	5 (1.5-1.8)	25 × 12	0.0045	100 pcs/ pack
5mm Miniduct Seal for cable 1.8-2.2mm MPB30608/5D	Blue	5 (1.8-2.2)	25 × 12	0.0045	100 pcs/ pack
7mm Miniduct Seal for cable 0.8-1.1mm MPB30608/7A	Purple	7 (0.8-1.1)	25 × 12	0.005	100 pcs/ pack
7mm Miniduct Seal for cable 1.1-1.5mm MPB30608/7B	Red	7 (1.1-1.5)	25 × 12	0.00453	100 pcs/pack
7mm Miniduct Seal for cable 1.5-1.8mm MPB30608/7C	Green	7 (1.5-1.8)	25 × 12	0.00453	100 pcs/pack
7mm Miniduct Seal for cable 1.8-2.2mm MPB30608/7D	Blue	7 (1.8-2.2)	25 × 12	0.00453	100 pcs/pack
7mm Miniduct Seal for cable 2.2-2.5mm MPB30608/7E	Yellow	7 (2.2-2.5)	25 × 12	0.00453	100 pcs/ pack
10mm Miniduct Seal for cable 0.8-1.1mm MPB30608/100A	Purple	10 (0.8-1.1)	25 × 15	0.005	25 pcs/ pack
10mm Miniduct Seal for cable 1.1-1.6mm MPB30608/100B	Red	10 (1.1-1.6)	25 × 15	0.005	25 pcs/ pack
10mm Miniduct Seal for cable 1.6-2.0mm MPB30608/100C	Green	10 (1.6-2.0)	25 × 15	0.005	25 pcs/ pack
10mm Miniduct Seal for cable 2.0-2.3mm MPB30608/100D	Blue	10 (2.0-2.3)	25 × 15	0.005	25 pcs/ pack
10mm Miniduct Seal for cable 2.3-2.7mm MPB30608/100E	Yellow	10 (2.3-2.7)	25 × 15	0.005	25 pcs/ pack